2.x-1=16/x.7+1

Simple and best practice solution for 2.x-1=16/x.7+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2.x-1=16/x.7+1 equation:



2.x-1=16/x.7+1
We move all terms to the left:
2.x-1-(16/x.7+1)=0
Domain of the equation: x.7+1)!=0
x∈R
We get rid of parentheses
2.x-16/x.7-1-1=0
We multiply all the terms by the denominator
(2.x)*x.7-1*x.7-1*x.7-16=0
We add all the numbers together, and all the variables
(+2.x)*x.7-1*x.7-1*x.7-16=0
We multiply parentheses
2x^2-1*x.7-1*x.7-16=0
Wy multiply elements
2x^2-1x-1x-16=0
We add all the numbers together, and all the variables
2x^2-2x-16=0
a = 2; b = -2; c = -16;
Δ = b2-4ac
Δ = -22-4·2·(-16)
Δ = 132
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{132}=\sqrt{4*33}=\sqrt{4}*\sqrt{33}=2\sqrt{33}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{33}}{2*2}=\frac{2-2\sqrt{33}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{33}}{2*2}=\frac{2+2\sqrt{33}}{4} $

See similar equations:

| m*6=8 | | (3w+1)(3+w)=0 | | 6x-100-3x+72=13 | | 6x–5=-4 | | 30+3y=4 | | 5(2x-1)=10x-10 | | 9x-6=-45 | | 5-y/4=3/7 | | 12−x+4=18+x | | 12−(x+4)=18+x | | (3y-4)(8-y)=0 | | 12−(z+4)=18+z | | 115x=180 | | -2x+5x+2=0 | | 4x+2(×-3)=3x+×-12 | | X²+x+3=0 | | 8x2-8,8x+2,1=0 | | ((2x-3)/8)+(1/4)=(5/2) | | 1200=6.25+x/2*24 | | 3x+3=x=8 | | (2x-3)/8+1/4=5/2 | | 3x+5+x+5=80 | | 9x=5x. | | X2+6x=-94 | | 6x2-12,5x+6=0 | | 135+2x+3x=180 | | -2x+4x+5x=27 | | 2t–5=9 | | 2(5)+5b=30 | | 4m+9=3-7m | | 5x+10=2x-222 | | 4-8k=18 |

Equations solver categories