If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2-(13-m)=-1m(m-19)-16
We move all terms to the left:
2-(13-m)-(-1m(m-19)-16)=0
We add all the numbers together, and all the variables
-(-1m+13)-(-1m(m-19)-16)+2=0
We get rid of parentheses
1m-(-1m(m-19)-16)-13+2=0
We calculate terms in parentheses: -(-1m(m-19)-16), so:We add all the numbers together, and all the variables
-1m(m-19)-16
We multiply parentheses
-m^2+19m-16
We add all the numbers together, and all the variables
-1m^2+19m-16
Back to the equation:
-(-1m^2+19m-16)
-(-1m^2+19m-16)+m-11=0
We get rid of parentheses
1m^2-19m+m+16-11=0
We add all the numbers together, and all the variables
m^2-18m+5=0
a = 1; b = -18; c = +5;
Δ = b2-4ac
Δ = -182-4·1·5
Δ = 304
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{304}=\sqrt{16*19}=\sqrt{16}*\sqrt{19}=4\sqrt{19}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-4\sqrt{19}}{2*1}=\frac{18-4\sqrt{19}}{2} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+4\sqrt{19}}{2*1}=\frac{18+4\sqrt{19}}{2} $
| 3x+80=100+x | | -12c-4+7,5c-11=-6 | | (4x+3)+12x=131 | | -2x-x=-2(x-3) | | 13.43-7.1q=18.08-6.8q | | 7(x-6=-14(x+2) | | -2z+3=3-2z | | 10+x*3=4 | | y+28=42 | | 4y+9.1=4.9y+5.86 | | z+60=17 | | 4y-38=180 | | 24z-22z-z=11 | | 7x+34=5x+76 | | 6x+36+2x+6x=180 | | 53+3x=180 | | 3/10+2x=16 | | 9+p*8=7 | | 26=7x+6x | | -6=z+-2 | | -6=q+4 | | -1(5h+7)+16h=40 | | -2x-x=-2(x=3) | | m/4-6=-1 | | 20=|5f| | | -x+5=-3x-3 | | (x/7-x)=2x | | (x+5)°=(3x-1)° | | -2q=12-q | | (15/4)x-1/12=7x | | -2(1+n)-5=-19-2n | | 5(3x-15=15(x-5) |