(15/4)x-1/12=7x

Simple and best practice solution for (15/4)x-1/12=7x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (15/4)x-1/12=7x equation:



(15/4)x-1/12=7x
We move all terms to the left:
(15/4)x-1/12-(7x)=0
Domain of the equation: 4)x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+15/4)x-7x-1/12=0
We add all the numbers together, and all the variables
-7x+(+15/4)x-1/12=0
We multiply parentheses
15x^2-7x-1/12=0
We multiply all the terms by the denominator
15x^2*12-7x*12-1=0
Wy multiply elements
180x^2-84x-1=0
a = 180; b = -84; c = -1;
Δ = b2-4ac
Δ = -842-4·180·(-1)
Δ = 7776
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{7776}=\sqrt{1296*6}=\sqrt{1296}*\sqrt{6}=36\sqrt{6}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-84)-36\sqrt{6}}{2*180}=\frac{84-36\sqrt{6}}{360} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-84)+36\sqrt{6}}{2*180}=\frac{84+36\sqrt{6}}{360} $

See similar equations:

| -2(1+n)-5=-19-2n | | 5(3x-15=15(x-5) | | -7(r-1)=15-5r | | 2(1+n)-5=-19-2n | | 1=w/2 | | 24p+3p-7p-20p+5p=50 | | -8(5n-7)=-16-4n | | 1=w2 | | 7+3p=5p-(p-8) | | x2-361=0 | | 6c=14=5c+4+9c | | 13m-12m=7 | | -1+k=-8(k+8) | | -8=-3+m*3 | | 8x-60=80 | | 5x=1=3x-3 | | 5x=11=3x-3 | | 8m+11m-9=48 | | 6(4+b)=24+6b | | 8z+3z+5z+22=20 | | -13-4.8x=1 | | (4x+2)-(12x+8)+10x-6=18 | | 4(3x+2)=12+8 | | -2(3m-3)=7-6m | | 6k+4(1+3k)=8k+34 | | 2v-14-12v=-6-6v | | 8+8r=1+r | | w/4+6=8 | | x-2.7=7.5 | | -4=6b-6b | | -13-4.8x=10 | | -4x+x=-7+1-3x+6 |

Equations solver categories