2(a-5)=4a(-2a-10)

Simple and best practice solution for 2(a-5)=4a(-2a-10) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(a-5)=4a(-2a-10) equation:



2(a-5)=4a(-2a-10)
We move all terms to the left:
2(a-5)-(4a(-2a-10))=0
We multiply parentheses
2a-(4a(-2a-10))-10=0
We calculate terms in parentheses: -(4a(-2a-10)), so:
4a(-2a-10)
We multiply parentheses
-8a^2-40a
Back to the equation:
-(-8a^2-40a)
We get rid of parentheses
8a^2+40a+2a-10=0
We add all the numbers together, and all the variables
8a^2+42a-10=0
a = 8; b = 42; c = -10;
Δ = b2-4ac
Δ = 422-4·8·(-10)
Δ = 2084
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2084}=\sqrt{4*521}=\sqrt{4}*\sqrt{521}=2\sqrt{521}$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(42)-2\sqrt{521}}{2*8}=\frac{-42-2\sqrt{521}}{16} $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(42)+2\sqrt{521}}{2*8}=\frac{-42+2\sqrt{521}}{16} $

See similar equations:

| 41-17=4(x-6) | | 12p-10p-p-1=19 | | 3/2(3-x)=1/6(x+3) | | 2x+5+x-3=2 | | 3√x^2*√x=x31/2*x1/2=x3/2+1/2=x4/2=x^2 | | 4x=1+25 | | -f-3=7+4f | | -9+20=19h-4-18h | | 6x-5+5x+15=15x-40 | | 16u-16u+4u=12 | | 0.6+3=0.2(3x+3) | | 5+2(y-7)=11 | | 2(3x-4)+5=6 | | 2v-5=17 | | -2-4n=-34 | | (x+4)+(3x+4)=5x-1 | | f/8-21=25 | | -2+3(2x-1)=55 | | 14=2/9(9a-15) | | x+5=17+7x | | -3(2x-2)=x+4 | | (y+13)+(y+13)=110 | | G+8g+8=19 | | 7x-9=10x-6 | | 4(x+3)+2x=3(x-4) | | 4x-10=20-1x | | -(3x+4)=-46 | | -5n=7+2n | | 4g+2(-6+4g)=1+g | | 5a+6=3a+23 | | 4.2(15.5x)=-20x-21-x | | 3/2(3-x)=16(x+3) |

Equations solver categories