2(3x+5)=5(2x-4)4x

Simple and best practice solution for 2(3x+5)=5(2x-4)4x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(3x+5)=5(2x-4)4x equation:



2(3x+5)=5(2x-4)4x
We move all terms to the left:
2(3x+5)-(5(2x-4)4x)=0
We multiply parentheses
6x-(5(2x-4)4x)+10=0
We calculate terms in parentheses: -(5(2x-4)4x), so:
5(2x-4)4x
We multiply parentheses
40x^2-80x
Back to the equation:
-(40x^2-80x)
We get rid of parentheses
-40x^2+6x+80x+10=0
We add all the numbers together, and all the variables
-40x^2+86x+10=0
a = -40; b = 86; c = +10;
Δ = b2-4ac
Δ = 862-4·(-40)·10
Δ = 8996
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{8996}=\sqrt{4*2249}=\sqrt{4}*\sqrt{2249}=2\sqrt{2249}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(86)-2\sqrt{2249}}{2*-40}=\frac{-86-2\sqrt{2249}}{-80} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(86)+2\sqrt{2249}}{2*-40}=\frac{-86+2\sqrt{2249}}{-80} $

See similar equations:

| -3(3b-6)=-24-2b | | 1-4q=-19 | | 1-5q=-19 | | 2-5r-1=1 | | 0.12*x=x-(0.82*x)-450000 | | -17=6x-3+x | | 3(6+4x)=-2(6x-9) | | 0.12*x=x-(0.6*x)-450000 | | (11/21)x=1188 | | x+(x-13)=90 | | 11/21x =1188 | | -5=2x-3x | | 0=16t^2+47+3 | | 3/4=4/9+x | | 2x+8*4=5x-11 | | ×=3x+72 | | v-5-3v=-7 | | (x+3)^2+6=31 | | 3x+6-1x=8+3x-6 | | 160x+160(x+9)=8x(x+9) | | 0.5/15=x/60 | | 160x+160x+640=(8x^2)+72x | | 31/9+c=31/4 | | 160x+160x+640=8x^2+72x | | x/3+2=2x+10 | | 0.2/4=25/x | | 510x+510x+5610=17x(x+11) | | 0.4/0.2=6/x | | 234x=123123 | | Y=3/5x+3/5 | | 510x+510x+5610=7x(x+11) | | 510*11=x |

Equations solver categories