If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18+(2x-15)x=3(11-5x)
We move all terms to the left:
18+(2x-15)x-(3(11-5x))=0
We add all the numbers together, and all the variables
(2x-15)x-(3(-5x+11))+18=0
We multiply parentheses
2x^2-15x-(3(-5x+11))+18=0
We calculate terms in parentheses: -(3(-5x+11)), so:We get rid of parentheses
3(-5x+11)
We multiply parentheses
-15x+33
Back to the equation:
-(-15x+33)
2x^2-15x+15x-33+18=0
We add all the numbers together, and all the variables
2x^2-15=0
a = 2; b = 0; c = -15;
Δ = b2-4ac
Δ = 02-4·2·(-15)
Δ = 120
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{120}=\sqrt{4*30}=\sqrt{4}*\sqrt{30}=2\sqrt{30}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{30}}{2*2}=\frac{0-2\sqrt{30}}{4} =-\frac{2\sqrt{30}}{4} =-\frac{\sqrt{30}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{30}}{2*2}=\frac{0+2\sqrt{30}}{4} =\frac{2\sqrt{30}}{4} =\frac{\sqrt{30}}{2} $
| 2(3a-6)=42 | | 2(4x+3)=12+4x | | 4(x-3)=-8(3x+1) | | 22-8x=0 | | 4(x4)=2(3x+1) | | 11x-5(2x-1)=3(6-x+3 | | (x-12)(5-2x)=0 | | 3(2-5)=9(10-x) | | 4.5-1.5=(6m+2) | | 1234+7x³=0 | | 8X+3=-5x-12 | | 10x+16=3(6x-2) | | (2/x-2)+(4/x+1)=3 | | 4(x5)=25 | | 4x-14=7x+11 | | x(4-√6)=10 | | 175=x² | | -10x-25=6x-27 | | 3=9-3/4x | | 17n=–19+16n | | 27x+18=15x+18 | | 7h-3=3h+17 | | 9×(3x+2)=3×(5x+6) | | 40+6x=4 | | 7x-2=2-3x+20 | | 4n(3n-5)(6n+3)=0 | | 4n(3n-5)(6n=3) | | 4v-2-v=0,5+v-2,5 | | 8x-7=3x-22 | | X=5t-3 | | x+70=180/3 | | 3x-2+x=5+4x |