If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16t^2+6t-130=0
a = 16; b = 6; c = -130;
Δ = b2-4ac
Δ = 62-4·16·(-130)
Δ = 8356
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8356}=\sqrt{4*2089}=\sqrt{4}*\sqrt{2089}=2\sqrt{2089}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{2089}}{2*16}=\frac{-6-2\sqrt{2089}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{2089}}{2*16}=\frac{-6+2\sqrt{2089}}{32} $
| 6n+4=11+1n | | −3(x+3)=4x−7 | | 3p=p+4 | | 2.5-0.02x=0.76 | | 36=-2y-4y-6 | | 5-10x=30x | | 6(2x-1)=4(5x-15)-10 | | −2−b=7 | | –11=4x–43. | | −3(x+3=)4x−7 | | 8x-3=10-7x | | 10x+24=50 | | (x-6)(x+18)=18 | | 3(y-2)=3y+5-(y+4) | | 5⅕+13/10x=13 | | 8x+I0=10x | | -(5b+4)=3(12-6) | | 2x-147=-94 | | 2v+65=104 | | -20x+7=-8 | | 9/4b=18 | | 6x-10=-5+3x | | (4x-2)=16 | | 40+x-2x=24-3x+x | | 3c+4=7c | | -2(v+5)=6v-34 | | y=12,8.X | | 8d=–d−9 | | 6(−8x−5)=-48x-30 | | b-1 +11 = -2 | | 22x-20=3(2x+4) | | 432=543-c/2 |