If it's not what You are looking for type in the equation solver your own equation and let us solve it.
165=(8+2x)(4+2x)-32
We move all terms to the left:
165-((8+2x)(4+2x)-32)=0
We add all the numbers together, and all the variables
-((2x+8)(2x+4)-32)+165=0
We multiply parentheses ..
-((+4x^2+8x+16x+32)-32)+165=0
We calculate terms in parentheses: -((+4x^2+8x+16x+32)-32), so:We get rid of parentheses
(+4x^2+8x+16x+32)-32
We get rid of parentheses
4x^2+8x+16x+32-32
We add all the numbers together, and all the variables
4x^2+24x
Back to the equation:
-(4x^2+24x)
-4x^2-24x+165=0
a = -4; b = -24; c = +165;
Δ = b2-4ac
Δ = -242-4·(-4)·165
Δ = 3216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3216}=\sqrt{16*201}=\sqrt{16}*\sqrt{201}=4\sqrt{201}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-4\sqrt{201}}{2*-4}=\frac{24-4\sqrt{201}}{-8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+4\sqrt{201}}{2*-4}=\frac{24+4\sqrt{201}}{-8} $
| X-16x=45000 | | 14u-6u-6=18 | | 2x-41=-15 | | 7-4y=-3y | | -6k=-5k-16 | | 320-5x=16x | | h+-9h-1=7 | | H=-16t2^2+900t+6= | | -8q-19=-6q+15 | | 3x+2/4+5x-4/6=2x-1/8 | | (3/4)y-6=2+(1/4)y | | 2z-2=10 | | 12t=3t-3=6 | | 16+8b=7b | | 2x²+10x-4=180 | | 84-(10x-25+4x)=97 | | 5x+43=22-3x | | 6-2(s+3=1+4s | | 95+95+x=360 | | 7f+19=6f | | v÷10=6 | | 95+95+x=90 | | 13/5x-30=0 | | 8x+(5x+8)+35=253-184 | | 18c-14c+5=-7 | | y=6(1/3)^2 | | 2x+33+4x+7=180 | | -3x^2-3x=-90 | | 6-2(x+3)=1+4 | | -4(n+-7)=12 | | 21/4+3(x+4)=4x+6(x+2) | | 14n-11n=9 |