If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15x^2=29
We move all terms to the left:
15x^2-(29)=0
a = 15; b = 0; c = -29;
Δ = b2-4ac
Δ = 02-4·15·(-29)
Δ = 1740
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1740}=\sqrt{4*435}=\sqrt{4}*\sqrt{435}=2\sqrt{435}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{435}}{2*15}=\frac{0-2\sqrt{435}}{30} =-\frac{2\sqrt{435}}{30} =-\frac{\sqrt{435}}{15} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{435}}{2*15}=\frac{0+2\sqrt{435}}{30} =\frac{2\sqrt{435}}{30} =\frac{\sqrt{435}}{15} $
| 1/3=s | | 7x+1=x=11 | | 20*p=100 | | 5x+2=1/2(3x+74) | | -4x=0+13 | | 9x+0=15 | | 11x-x+2=112 | | 49=78u | | 173-4x=23x+20 | | 8x+0=-5 | | 0+6y=-5 | | -2x-0=10 | | 0-4y=-3 | | -x2+25=0 | | E^(7x)=4.6 | | 32+n=12 | | 1/2x+9/4=1/4-1/2 | | 0.8=9.6/r | | 27+3/5=y-2/3 | | 4(2y-3)-7y=5(y-4) | | (4x-3)/5=2 | | 3/4g=-9 | | 4x+0=6 | | 8x+5=5×-10 | | 4(2y-3)-7=5(y-4) | | 5u–7≤=3 | | (4/3)x+5=17 | | 3x-0=-3 | | 0-4x=-3 | | 9x-6x-2=5 | | 3/2-w=1/4 | | 4x+6=4x=6 |