If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15x^2-25=0
a = 15; b = 0; c = -25;
Δ = b2-4ac
Δ = 02-4·15·(-25)
Δ = 1500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1500}=\sqrt{100*15}=\sqrt{100}*\sqrt{15}=10\sqrt{15}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{15}}{2*15}=\frac{0-10\sqrt{15}}{30} =-\frac{10\sqrt{15}}{30} =-\frac{\sqrt{15}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{15}}{2*15}=\frac{0+10\sqrt{15}}{30} =\frac{10\sqrt{15}}{30} =\frac{\sqrt{15}}{3} $
| -2x-11=9 | | 19=6/8x | | 2^x+1=14 | | 10^(x+8)=36 | | 2/1r−3=3(4−2/3r) | | 10(3x-2)=100-10x | | 2x2-18x=0 | | 3/4x-18x=24 | | 7x+-2=5x+14 | | x2+10=0 | | 2y^2+3y+3=0/13/5 | | 0=5n-1 | | w/5+12=36 | | -2=3t-5 | | 11x2-44=0 | | 2w-17=7 | | w-9.8=6.98 | | 2x+4x+x=840 | | 15=v/5-16 | | 6x-6x=11 | | -8x-2x=-8x+4 | | -y+2(+y)=27 | | 275+25(w)=500 | | 2x-3=5x-27 | | 4(x-6)=-7 | | -7x-5=-4-8x | | y/2+14=15 | | Y^2+3y+7=0 | | -5-(-26)=x/10 | | 28.8=16x | | 4(m+4)=-4(m-2) | | 3x-21=-23+3x+6 |