If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-18x=0
a = 2; b = -18; c = 0;
Δ = b2-4ac
Δ = -182-4·2·0
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{324}=18$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-18}{2*2}=\frac{0}{4} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+18}{2*2}=\frac{36}{4} =9 $
| 3/4x-18x=24 | | 7x+-2=5x+14 | | x2+10=0 | | 2y^2+3y+3=0/13/5 | | 0=5n-1 | | w/5+12=36 | | -2=3t-5 | | 11x2-44=0 | | 2w-17=7 | | w-9.8=6.98 | | 2x+4x+x=840 | | 15=v/5-16 | | 6x-6x=11 | | -8x-2x=-8x+4 | | -y+2(+y)=27 | | 275+25(w)=500 | | 2x-3=5x-27 | | 4(x-6)=-7 | | -7x-5=-4-8x | | y/2+14=15 | | Y^2+3y+7=0 | | -5-(-26)=x/10 | | 28.8=16x | | 4(m+4)=-4(m-2) | | 3x-21=-23+3x+6 | | -2(b-4)=-(b-3) | | 3u-12=30 | | x÷-3=40 | | 4(m+2)=-4(m-2 | | -9-5m=2+6m | | 3(4a-2)=11a | | 26x+19=12x+5 |