15-5x=(4x+1)(x-1)

Simple and best practice solution for 15-5x=(4x+1)(x-1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 15-5x=(4x+1)(x-1) equation:



15-5x=(4x+1)(x-1)
We move all terms to the left:
15-5x-((4x+1)(x-1))=0
We multiply parentheses ..
-((+4x^2-4x+x-1))-5x+15=0
We calculate terms in parentheses: -((+4x^2-4x+x-1)), so:
(+4x^2-4x+x-1)
We get rid of parentheses
4x^2-4x+x-1
We add all the numbers together, and all the variables
4x^2-3x-1
Back to the equation:
-(4x^2-3x-1)
We add all the numbers together, and all the variables
-5x-(4x^2-3x-1)+15=0
We get rid of parentheses
-4x^2-5x+3x+1+15=0
We add all the numbers together, and all the variables
-4x^2-2x+16=0
a = -4; b = -2; c = +16;
Δ = b2-4ac
Δ = -22-4·(-4)·16
Δ = 260
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{260}=\sqrt{4*65}=\sqrt{4}*\sqrt{65}=2\sqrt{65}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{65}}{2*-4}=\frac{2-2\sqrt{65}}{-8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{65}}{2*-4}=\frac{2+2\sqrt{65}}{-8} $

See similar equations:

| 2x+8=5-6x | | 3(x+2)+5(2-x)=-34 | | 0.3x+19.4=38 | | 6x+6-9(x+1)=5x+4 | | 0.2x+16.4=30 | | -3x-3=5x+4 | | (2)^(2^x)-6(2^x)+8=0 | | 2x+(1+x)=-2 | | 16a+12=18a+20 | | -4(x-7)+4=-8(x+2) | | 16a+12=18+20 | | 4x+(x-4)=26 | | 1/3x+5=3/4x-2 | | 0.008(2-k)+0.03(k-2)=1 | | 6x÷3-30(6x+18)=24x-6 | | -5x+5=3x-7 | | 1/3(2x-7)=7 | | 8m=72m^2 | | 8m=72m | | 1.28=x-55/15 | | -10a-(a+5)=14 | | 8a+6+8a+6=9a+10+9a+10 | | X+0.20x=652.80 | | 8x-6=-7 | | (1/x-3)-(2/x+3)=(2/x^2-9) | | X+0.20x=704.40 | | 8x^2-64=71;4 | | 4x+5-8x-3=-4-4x+6 | | 4-(2m+12)=-3m | | 1/8t+6/8t-3=4 | | (-2g+7)-(g+11)=g | | 0.5x=0.2x |

Equations solver categories