If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14x^2=9
We move all terms to the left:
14x^2-(9)=0
a = 14; b = 0; c = -9;
Δ = b2-4ac
Δ = 02-4·14·(-9)
Δ = 504
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{504}=\sqrt{36*14}=\sqrt{36}*\sqrt{14}=6\sqrt{14}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{14}}{2*14}=\frac{0-6\sqrt{14}}{28} =-\frac{6\sqrt{14}}{28} =-\frac{3\sqrt{14}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{14}}{2*14}=\frac{0+6\sqrt{14}}{28} =\frac{6\sqrt{14}}{28} =\frac{3\sqrt{14}}{14} $
| (3x+9)=12+24 | | x+63=2(2x-19) | | 80-2x=60 | | 2x-19=2(x+63) | | 3p-36=p | | 3(6)-2y=4 | | 7x+9=3(5+2x) | | 6x=18-3x+3x | | 5x+6=5x-3 | | 4(4x-1)=-52 | | X^2-10=2x+25 | | (4x+3)(7x-5)=0 | | 0=r^2+8r-33 | | -(x-3)-(2x-4)=7 | | (6x-8)÷8=-7 | | -(x-3)-2(2x-4)=7 | | 25-19=3(x-2) | | 30v^2+144v-30=0 | | 2x+17=2(4x-19) | | 4.5*3.2=x | | F(x)=3x+9/x-2 | | 5(2x+1)=2(x+2) | | 4x-19=2(2x+17) | | 6-3n/9-5n+2/6=5 | | 3x-56=38 | | (3c-2)-7c=40-2c | | -9(w-6)=-5w+38 | | x²+91x+36=0 | | 2/3(4x+11)=3x+5 | | 9(0.b+0.5)=11.7 | | 3(y+2)=4(y−1)+10 | | 3n-5=-8(6+5n)= |