If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14x+x2=225
We move all terms to the left:
14x+x2-(225)=0
We add all the numbers together, and all the variables
x^2+14x-225=0
a = 1; b = 14; c = -225;
Δ = b2-4ac
Δ = 142-4·1·(-225)
Δ = 1096
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1096}=\sqrt{4*274}=\sqrt{4}*\sqrt{274}=2\sqrt{274}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{274}}{2*1}=\frac{-14-2\sqrt{274}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{274}}{2*1}=\frac{-14+2\sqrt{274}}{2} $
| 225=x2+14x | | 7+4b=11b.11(6) | | x2=x-2(2x) | | X+40=x+30 | | 7+4b=11(6) | | 2/3(1/2x-6)=1/6(4x-1)+2 | | 4x-5=18x+101 | | 2x4-4x=0 | | 28=11.25+2.5x | | 2(3x+2)=2x-1+x. | | 2(2p-11)-2p+8=4(p-4) | | 3x9=11 | | 1/5(25x+30)-3=1/5(20x+15)-3 | | 2m+m=16-m | | 6a=50+a | | y/6+1=10 | | 5(10-3x)=4(2x+1) | | x2=2x2-2 | | 4x-5(x+3)=2 | | 50-6n=8 | | 4x-40=x=50 | | -4x+16=-20-2x | | 4×-5(x+3)=2 | | x2=x-2(x-2+x+2) | | -x*2=-25*2 | | x/12+3245=3290 | | 225=36x+81 | | x-9(4+2x)+23=4-6(3x-1) | | 3x+200+50=2x+200+200+50 | | x=32-0.05*x | | c/2-5=21 | | x9-1=5 |