If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14w^2+7w=0
a = 14; b = 7; c = 0;
Δ = b2-4ac
Δ = 72-4·14·0
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-7}{2*14}=\frac{-14}{28} =-1/2 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+7}{2*14}=\frac{0}{28} =0 $
| (4n^2-6)=(4n^2+10) | | 4x²-80=0 | | 16+8x=88 | | -4y-11=5y+7= | | 35=x(x+16) | | 10x-1=10x+4. | | 2t-2=3(t+2)= | | X+17+4x=-34-4x-39= | | -17x-20=14x+85= | | z/6+12=24 | | -26=5a | | x/7=48/56 | | 2x^2+30x-675=0 | | 2x^2-30x-675=0 | | -8(k-1)-4=-2(5k+1) | | 9(5x-3/2)=(7)(x) | | 6/a=14/21 | | 6w-13w=40 | | -34=5=7(v-2) | | (x+14)*2=134 | | (1/4x+14=66) | | 2*{x+14)=134 | | n-8=4×3 | | x^2-4=3x+24 | | -7=n/5-5 | | n-8=4•3 | | 8(8d+3)=-28 | | f(-3)=3|-3+1+5 | | 6(x-5)-10=3(4x-2)-4x | | (3n-8)=16 | | 6(x-5)-10=3(4x-2)-4 | | 5x-4-1=3 |