If it's not what You are looking for type in the equation solver your own equation and let us solve it.
132=(15-2x)(10-2x)
We move all terms to the left:
132-((15-2x)(10-2x))=0
We add all the numbers together, and all the variables
-((-2x+15)(-2x+10))+132=0
We multiply parentheses ..
-((+4x^2-20x-30x+150))+132=0
We calculate terms in parentheses: -((+4x^2-20x-30x+150)), so:We get rid of parentheses
(+4x^2-20x-30x+150)
We get rid of parentheses
4x^2-20x-30x+150
We add all the numbers together, and all the variables
4x^2-50x+150
Back to the equation:
-(4x^2-50x+150)
-4x^2+50x-150+132=0
We add all the numbers together, and all the variables
-4x^2+50x-18=0
a = -4; b = 50; c = -18;
Δ = b2-4ac
Δ = 502-4·(-4)·(-18)
Δ = 2212
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2212}=\sqrt{4*553}=\sqrt{4}*\sqrt{553}=2\sqrt{553}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(50)-2\sqrt{553}}{2*-4}=\frac{-50-2\sqrt{553}}{-8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(50)+2\sqrt{553}}{2*-4}=\frac{-50+2\sqrt{553}}{-8} $
| 150x-50x²+4x³=132 | | 19xJ=133 | | 27x/30=3/x | | (2x/5)-3/x=5x/6 | | 6(4u+1/5)-1/2=7/10 | | 18x^2-193x+492=0 | | 6(a-2)=78 | | 6(a+2)=78 | | 9x-30+6x=4+14-x* | | x/9x-30+6x=4+14-x | | 6x+5=−3+4x | | (2x+12)/3x=5/6 | | a23=4+(23-1)11 | | 3-3(2x+1)=x+21 | | -31/2=1/2×+1/2x+× | | H(t)=-4t^2+12t+1 | | 15x−50=75 | | 14x+7+15x=180 | | x+136=x=56 | | 2x-20=10(x-20) | | 10x-4+8x+8=180 | | 8x+2+20x+10=180 | | 4x+12=6x=12 | | 14x+2-2+31x=180 | | 10x-40=10X+6 | | 28*5/7x=x | | 15y+8y=56 | | y+6=14/28 | | 6p+10-p=10-7p | | 7^(x+3)=9^x | | (5x-20)-(x-24)=x+60 | | Y=(3/4)x+1(-5,11) |