x/9x-30+6x=4+14-x

Simple and best practice solution for x/9x-30+6x=4+14-x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x/9x-30+6x=4+14-x equation:



x/9x-30+6x=4+14-x
We move all terms to the left:
x/9x-30+6x-(4+14-x)=0
Domain of the equation: 9x!=0
x!=0/9
x!=0
x∈R
We add all the numbers together, and all the variables
x/9x+6x-(-1x+18)-30=0
We add all the numbers together, and all the variables
6x+x/9x-(-1x+18)-30=0
We get rid of parentheses
6x+x/9x+1x-18-30=0
We multiply all the terms by the denominator
6x*9x+x+1x*9x-18*9x-30*9x=0
We add all the numbers together, and all the variables
x+6x*9x+1x*9x-18*9x-30*9x=0
Wy multiply elements
54x^2+9x^2+x-162x-270x=0
We add all the numbers together, and all the variables
63x^2-431x=0
a = 63; b = -431; c = 0;
Δ = b2-4ac
Δ = -4312-4·63·0
Δ = 185761
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{185761}=431$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-431)-431}{2*63}=\frac{0}{126} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-431)+431}{2*63}=\frac{862}{126} =6+53/63 $

See similar equations:

| 6x+5=−3+4x | | (2x+12)/3x=5/6 | | a23=4+(23-1)11 | | 3-3(2x+1)=x+21 | | -31/2=1/2×+1/2x+× | | H(t)=-4t^2+12t+1 | | 15x−50=75 | | 14x+7+15x=180 | | x+136=x=56 | | 2x-20=10(x-20) | | 10x-4+8x+8=180 | | 8x+2+20x+10=180 | | 4x+12=6x=12 | | 14x+2-2+31x=180 | | 10x-40=10X+6 | | 28*5/7x=x | | 15y+8y=56 | | y+6=14/28 | | 6p+10-p=10-7p | | 7^(x+3)=9^x | | (5x-20)-(x-24)=x+60 | | Y=(3/4)x+1(-5,11) | | (c+5)/(4)=43 | | 3b=81=b | | 4s+44=112 | | P=-0.3x^2+36x-1040 | | 8-3x÷5x+31=2/3 | | (3x+11)+9x=42 | | −2.3=x+(−1.1) | | 3b-2=4b+1 | | 2(y-5/2)=0•3 | | 3x2+17=209 |

Equations solver categories