If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12x^2-4x=0
a = 12; b = -4; c = 0;
Δ = b2-4ac
Δ = -42-4·12·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4}{2*12}=\frac{0}{24} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4}{2*12}=\frac{8}{24} =1/3 $
| x2-6=0 | | 3x-2(0)=12 | | 16t+10=15t+16 | | 12x=15(×-5) | | 0=3+k/9 | | -9+7x+3x=61 | | 4x-2x+4=8x+23-5x | | 4m+3(m+3)=15-2m+3 | | 16=3x+2-9 | | -1/2x+1.5=1/2(3-x) | | x2-x-6=0 | | 11b-13-10b+18=16 | | 9x2-16=0 | | 2x-5x+2=4x+19 | | 12g=12(3/2g-1)+11 | | 5(9k+7)=-33+4k | | 48+4x=1.29x | | 22=1/2w-26 | | Y-5=-2/3x-6 | | 540=x(2-X) | | 3y2+7y=-2 | | 7p=2p+30 | | 11x-63=3 | | 1/5+x/5=-2/5 | | 2m{m-3(m=2)} | | 12g=12(3/2g−1)+11 | | 175m-100m+47,500=51,250-175m | | 540=x(2-×) | | 4g+4(−4+4g)=11−g | | 5+4(x-7)=42-6x | | 1+3x=x+5 | | 3/26=21/x |