If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2-16=0
a = 9; b = 0; c = -16;
Δ = b2-4ac
Δ = 02-4·9·(-16)
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24}{2*9}=\frac{-24}{18} =-1+1/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24}{2*9}=\frac{24}{18} =1+1/3 $
| 2x-5x+2=4x+19 | | 12g=12(3/2g-1)+11 | | 5(9k+7)=-33+4k | | 48+4x=1.29x | | 22=1/2w-26 | | Y-5=-2/3x-6 | | 540=x(2-X) | | 3y2+7y=-2 | | 7p=2p+30 | | 11x-63=3 | | 1/5+x/5=-2/5 | | 2m{m-3(m=2)} | | 12g=12(3/2g−1)+11 | | 175m-100m+47,500=51,250-175m | | 540=x(2-×) | | 4g+4(−4+4g)=11−g | | 5+4(x-7)=42-6x | | 1+3x=x+5 | | 3/26=21/x | | 3.5x+x=120 | | 8(m-5)=56 | | 1/8x7=9 | | 19j-16+15j=16 | | 6x=12=6x=12 | | x2-20x+52=0 | | -10x^2+37x-12=0 | | 8(w−5)−(6+9w)=−2w | | 50x+250=65x+175 | | 14(x-3)-22x=-8 | | -x^2=3x-54 | | 1=0.5x-0.6x-3 | | 50x250=65x+175 |