12x-8(x+1)(x-1)-8x(x-1)=14x-5+(4x-2)(4x+2)

Simple and best practice solution for 12x-8(x+1)(x-1)-8x(x-1)=14x-5+(4x-2)(4x+2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 12x-8(x+1)(x-1)-8x(x-1)=14x-5+(4x-2)(4x+2) equation:



12x-8(x+1)(x-1)-8x(x-1)=14x-5+(4x-2)(4x+2)
We move all terms to the left:
12x-8(x+1)(x-1)-8x(x-1)-(14x-5+(4x-2)(4x+2))=0
We use the square of the difference formula
x^2+16x^2+12x-8x(x-1)+1+4=0
We multiply parentheses
x^2+16x^2-8x^2+12x+8x+1+4=0
We add all the numbers together, and all the variables
9x^2+20x+5=0
a = 9; b = 20; c = +5;
Δ = b2-4ac
Δ = 202-4·9·5
Δ = 220
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{220}=\sqrt{4*55}=\sqrt{4}*\sqrt{55}=2\sqrt{55}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-2\sqrt{55}}{2*9}=\frac{-20-2\sqrt{55}}{18} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+2\sqrt{55}}{2*9}=\frac{-20+2\sqrt{55}}{18} $

See similar equations:

| 4a-a=-15-2a | | 20=2j+8j | | A=362+363=725-A=1/2=1x724 | | x(5)=100 | | -2x(5x-4)-(5x-4)=(5x-4)(5x-4) | | 4=r+3r | | 4=r+32 | | 9w-2=-w-22= | | (x-0.45x)+0.0875(x-0.45x)=39.95 | | (3x+5)(3x-5)-(6-4x)(6+4x)=0 | | 6(b-4)=6b-24= | | -8–4x=8 | | 2p-7p=-7-6p | | 7w-8w=-4w-30= | | 1/3(3x-12)=14 | | –8–4x=8 | | 4k​ =83​ | | 4m+15-11m=7-2+3m | | -17(y-2)=-17y+64−17(y−2)=−17y+64 | | 4x-16=7x+2= | | 2v+5v=5v-14 | | 2v+6v=5v-14 | | 5x-9=4x+44 | | x⁴-6x³+2x²+96x-144=0 | | A=1/2x35=70+10+25+10+15=725 | | 8y=24-16 | | -2x-4–=4x-10 | | 4x(2x-3)-5(1-6x)=15x-3x(7-8x) | | 2-7n=4n-8n+2 | | -3(m+2)-5=-20 | | 19-8d=d-17= | | A=362+363=725-A=1/2x35+10+25+10+15=725 |

Equations solver categories