If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(3x+5)(3x-5)-(6-4x)(6+4x)=0
We add all the numbers together, and all the variables
(3x+5)(3x-5)-(-4x+6)(4x+6)=0
We use the square of the difference formula
9x^2-(-4x+6)(4x+6)-25=0
We multiply parentheses ..
9x^2-(-16x^2-24x+24x+36)-25=0
We get rid of parentheses
9x^2+16x^2+24x-24x-36-25=0
We add all the numbers together, and all the variables
25x^2-61=0
a = 25; b = 0; c = -61;
Δ = b2-4ac
Δ = 02-4·25·(-61)
Δ = 6100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6100}=\sqrt{100*61}=\sqrt{100}*\sqrt{61}=10\sqrt{61}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{61}}{2*25}=\frac{0-10\sqrt{61}}{50} =-\frac{10\sqrt{61}}{50} =-\frac{\sqrt{61}}{5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{61}}{2*25}=\frac{0+10\sqrt{61}}{50} =\frac{10\sqrt{61}}{50} =\frac{\sqrt{61}}{5} $
| 6(b-4)=6b-24= | | -8–4x=8 | | 2p-7p=-7-6p | | 7w-8w=-4w-30= | | 1/3(3x-12)=14 | | –8–4x=8 | | 4k =83 | | 4m+15-11m=7-2+3m | | -17(y-2)=-17y+64−17(y−2)=−17y+64 | | 4x-16=7x+2= | | 2v+5v=5v-14 | | 2v+6v=5v-14 | | 5x-9=4x+44 | | x⁴-6x³+2x²+96x-144=0 | | A=1/2x35=70+10+25+10+15=725 | | 8y=24-16 | | -2x-4–=4x-10 | | 4x(2x-3)-5(1-6x)=15x-3x(7-8x) | | 2-7n=4n-8n+2 | | -3(m+2)-5=-20 | | 19-8d=d-17= | | A=362+363=725-A=1/2x35+10+25+10+15=725 | | 6(4n-7)=-186 | | 25=x/3-11 | | (x-5)(x+5)/(x-5)-2x(9-9x)/4x=(14+6x)3x·x/7x | | 4n+5=n+4 | | (2x-3)(2x-3)=3x(x-4) | | 16^2x-7=1/5^5x+2 | | 1/8n-4=6 | | x(7-2x)/5-2x(10x+3)/2=(-3x-4)/20+3x(12-8x)/4 | | 6+b-2=18 | | -15+17y=20y |