12=3/2x2-(4)(7)

Simple and best practice solution for 12=3/2x2-(4)(7) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 12=3/2x2-(4)(7) equation:



12=3/2x^2-(4)(7)
We move all terms to the left:
12-(3/2x^2-(4)(7))=0
Domain of the equation: 2x^2-47)!=0
x∈R
We get rid of parentheses
-3/2x^2+47+12=0
We multiply all the terms by the denominator
47*2x^2+12*2x^2-3=0
Wy multiply elements
94x^2+24x^2-3=0
We add all the numbers together, and all the variables
118x^2-3=0
a = 118; b = 0; c = -3;
Δ = b2-4ac
Δ = 02-4·118·(-3)
Δ = 1416
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1416}=\sqrt{4*354}=\sqrt{4}*\sqrt{354}=2\sqrt{354}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{354}}{2*118}=\frac{0-2\sqrt{354}}{236} =-\frac{2\sqrt{354}}{236} =-\frac{\sqrt{354}}{118} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{354}}{2*118}=\frac{0+2\sqrt{354}}{236} =\frac{2\sqrt{354}}{236} =\frac{\sqrt{354}}{118} $

See similar equations:

| x=4/3-8=-2 | | 54=-16t^2-60t+54 | | 54=-16t^2+60t+54 | | 3.6x7=25.2 | | 3*x=x+4 | | 3+a=133 | | g/5-4=12+2g | | -1/7d=20 | | 9-(2p+4)=9-p | | 11=4x-(-17) | | 5(2y+1)=10(y+1)-4 | | 3-6(2-x)=-21 | | x-1/5x=8 | | 15(x+3)=5(x-11)+20 | | 9x-8=5x-10+50 | | 4(2n+1)=8(n-2)+20 | | 11-23=2t+2t | | Y+3y+5y=-28 | | 25x+40x=x=4 | | 8x6=8x+8x | | -3q-9=-18 | | 64-1x=228-3x | | 2(x–1)+3(x–2)=4(x+3) | | 8/9x=9/5 | | 18=w/2-11 | | 8x÷4x=4 | | x+5/4=x-7 | | 13(3c-7)=9c-6 | | 4(x–4)+3x=19 | | 15(6c-8)=6c-3 | | x2+2x+-40=0 | | q≥0,6;q=0,23 |

Equations solver categories