If it's not what You are looking for type in the equation solver your own equation and let us solve it.
122(t)=-16t^2+64t+48.
We move all terms to the left:
122(t)-(-16t^2+64t+48.)=0
We get rid of parentheses
16t^2-64t+122t-48.=0
We add all the numbers together, and all the variables
16t^2+58t-48=0
a = 16; b = 58; c = -48;
Δ = b2-4ac
Δ = 582-4·16·(-48)
Δ = 6436
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6436}=\sqrt{4*1609}=\sqrt{4}*\sqrt{1609}=2\sqrt{1609}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(58)-2\sqrt{1609}}{2*16}=\frac{-58-2\sqrt{1609}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(58)+2\sqrt{1609}}{2*16}=\frac{-58+2\sqrt{1609}}{32} $
| 4x+24x=-35 | | 9=z/3+8 | | 6x+7/2=31/2 | | 41/4+4/¥=x | | 6=(2/3)y | | -6b+8b=6 | | 4/3x-6x+3=2x-1/3 | | -16=c/2-11 | | ?B=4x+38 | | 16y+24=9y-18 | | 13=-7x-6x | | 3/4(2x-1)=1/2(3x+2) | | 6x-10+1=8x+11 | | F(x)=5x2-2(x)+3 | | 0.45+2.5x=40+0.25x | | -16=c2–11 | | -16=6-7n-8 | | -18-6k=6+108k | | -2-7x-8=-17 | | 5x-3(x+2)=18 | | -16=2(v+7)-7v | | 2x(x-10)=55 | | 9=4x+9 | | X2-12x+36=80 | | x+4=4x-45 | | x+4=4x+45 | | 3(3x+1)-4(x+1)=9 | | 4a=36/a | | 4t+12=4 | | x+1/3x=264 | | 25=3(y-5)-7y | | x+1/3x=364 |