If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x(x-10)=55
We move all terms to the left:
2x(x-10)-(55)=0
We multiply parentheses
2x^2-20x-55=0
a = 2; b = -20; c = -55;
Δ = b2-4ac
Δ = -202-4·2·(-55)
Δ = 840
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{840}=\sqrt{4*210}=\sqrt{4}*\sqrt{210}=2\sqrt{210}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-2\sqrt{210}}{2*2}=\frac{20-2\sqrt{210}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+2\sqrt{210}}{2*2}=\frac{20+2\sqrt{210}}{4} $
| 9=4x+9 | | X2-12x+36=80 | | x+4=4x-45 | | x+4=4x+45 | | 3(3x+1)-4(x+1)=9 | | 4a=36/a | | 4t+12=4 | | x+1/3x=264 | | 25=3(y-5)-7y | | x+1/3x=364 | | 7/2+1/2x=271/2+9/2x | | 3x+7=3x+16 | | 9((x+3)/2)^2+6((x+3)/2)+1=0 | | x2-25=11 | | 208-u=295 | | X-2=2x-2 | | 15x+21=12x-9 | | 5y+2-12y=0 | | 5x+14-4x=23-x-9 | | 2x*7=64 | | 6+2/3x=9 | | X+20=8x+40 | | x+x+x+x=32 | | 5^(3x-4)=21 | | 8x+6=8x+11 | | 8x+2x-1=39 | | 3/11+x=7/15 | | 5^3x-4=21 | | (4x+5)/10=-2 | | 1+5x=4+2x | | 4(x-2)=3(6-x) | | 4(×-6)+8=6x-6 |