If it's not what You are looking for type in the equation solver your own equation and let us solve it.
121-49x^2=0
a = -49; b = 0; c = +121;
Δ = b2-4ac
Δ = 02-4·(-49)·121
Δ = 23716
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{23716}=154$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-154}{2*-49}=\frac{-154}{-98} =1+4/7 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+154}{2*-49}=\frac{154}{-98} =-1+4/7 $
| -2(8-6n)=-30+5n | | 5x-28=x+0.8+11.2 | | -7k+21=-7(2+6k) | | x²+3x=(x-13)(x+2)+222 | | 4z^2+62z=32 | | -x^2-0.5x+2=0 | | -x^2-0.5x+2=2 | | 3(4x-5)=3(5x+7) | | 6x-3=5-3x+2 | | 12+4,2x=4-1,8X | | 1/5+f=9 | | 3(x-1)+5x-6=7.5 | | 9x=5x+13 | | x2-3*6=0 | | 13n+10=-11n-12 | | 11a+12=32+6a | | 3(y+4)=3(y+1) | | -5(-5+7a)=165 | | 50=x2+((2x-5)*2) | | X-3(2x-5)=x-2(2x-4) | | -j=8 | | 6x-3=5-3x-2 | | 3.2x-17x+5.5=10 | | 9x²-16=0 | | 6-5h=h+6 | | -x^2-x+2=1 | | 25x+240=1000 | | -165=5(8r+7) | | 4x-9=11x-23 | | 14+5x=-6(-3x+15)+5 | | 7(x-2)-8(4-3)=47 | | 2+3x+24=8x+4 |