50=x2+((2x-5)*2)

Simple and best practice solution for 50=x2+((2x-5)*2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 50=x2+((2x-5)*2) equation:



50=x2+((2x-5)*2)
We move all terms to the left:
50-(x2+((2x-5)*2))=0
We calculate terms in parentheses: -(x2+((2x-5)*2)), so:
x2+((2x-5)*2)
We add all the numbers together, and all the variables
x^2+((2x-5)*2)
We calculate terms in parentheses: +((2x-5)*2), so:
(2x-5)*2
We multiply parentheses
4x-10
Back to the equation:
+(4x-10)
We get rid of parentheses
x^2+4x-10
Back to the equation:
-(x^2+4x-10)
We get rid of parentheses
-x^2-4x+10+50=0
We add all the numbers together, and all the variables
-1x^2-4x+60=0
a = -1; b = -4; c = +60;
Δ = b2-4ac
Δ = -42-4·(-1)·60
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{256}=16$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-16}{2*-1}=\frac{-12}{-2} =+6 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+16}{2*-1}=\frac{20}{-2} =-10 $

See similar equations:

| X-3(2x-5)=x-2(2x-4) | | -j=8 | | 6x-3=5-3x-2 | | 3.2x-17x+5.5=10 | | 9x²-16=0 | | 6-5h=h+6 | | -x^2-x+2=1 | | 25x+240=1000 | | -165=5(8r+7) | | 4x-9=11x-23 | | 14+5x=-6(-3x+15)+5 | | 7(x-2)-8(4-3)=47 | | 2+3x+24=8x+4 | | |2x+1|=13-x | | 42y+50=9y | | -14y-10=-3-15y | | -10n+10=-8n-18 | | 4a+3=63-2a | | x*x+30x=10800 | | 4x+2=3(x+1) | | 4x^2+24x-85=0 | | 4a+3=64-2a | | x+5x+1=92 | | 9x²-48x=0 | | 27x=3*(4x-31)+18 | | x+0,62x=1,62x | | 4(y+6)=48 | | 3x^2-26x-160=0 | | 7p+3=3(5-p) | | -3x+8=-6+4x | | 4x^2+24-85=0 | | 36-25x+4x^2=0 |

Equations solver categories