12(x+8)+3/2x=10

Simple and best practice solution for 12(x+8)+3/2x=10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 12(x+8)+3/2x=10 equation:



12(x+8)+3/2x=10
We move all terms to the left:
12(x+8)+3/2x-(10)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
We multiply parentheses
12x+3/2x+96-10=0
We multiply all the terms by the denominator
12x*2x+96*2x-10*2x+3=0
Wy multiply elements
24x^2+192x-20x+3=0
We add all the numbers together, and all the variables
24x^2+172x+3=0
a = 24; b = 172; c = +3;
Δ = b2-4ac
Δ = 1722-4·24·3
Δ = 29296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{29296}=\sqrt{16*1831}=\sqrt{16}*\sqrt{1831}=4\sqrt{1831}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(172)-4\sqrt{1831}}{2*24}=\frac{-172-4\sqrt{1831}}{48} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(172)+4\sqrt{1831}}{2*24}=\frac{-172+4\sqrt{1831}}{48} $

See similar equations:

| 4h−7=9 | | -5x+14=-21 | | 4h-7=9 | | 3q−6=9 | | 3(2x+4)-x=27 | | 6-2z=-2 | | x+9/4=5 | | -16+4=-32+10x | | |y-4|=6 | | 10r^2-51r+27=0 | | 3x+6x=31 | | -3(2y-4)=7(1-y) | | 6x-14.65=6.7 | | 11=3t-7 | | 4v+16=84 | | 3x+6/4+4x+2/10=4 | | 3x+1.5=2.6x+4.7 | | 3n-3=-135 | | 13-3*2x1=4 | | 8v=6v+10 | | 3x2-14x+16=0 | | -2.4a+3.7=16,1+3,1a | | 4x-3/2+7/4=8x+1/4= | | x+3/9=x+3 | | -18=w/6 | | 3c-8=-104 | | 1+4x=-1+6x+2-2 | | x-3/3x+1=-3 | | 9c^-64=0 | | 3x-4^2=25 | | 3m+9=-9 | | 7-3s=-2 |

Equations solver categories