If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-14x+16=0
a = 3; b = -14; c = +16;
Δ = b2-4ac
Δ = -142-4·3·16
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-2}{2*3}=\frac{12}{6} =2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+2}{2*3}=\frac{16}{6} =2+2/3 $
| -2.4a+3.7=16,1+3,1a | | 4x-3/2+7/4=8x+1/4= | | x+3/9=x+3 | | -18=w/6 | | 3c-8=-104 | | 1+4x=-1+6x+2-2 | | x-3/3x+1=-3 | | 9c^-64=0 | | 3x-4^2=25 | | 3m+9=-9 | | 7-3s=-2 | | 12-8v=5v+2 | | x(0.30)=575 | | 2a-5=-2a+4(a-2)+1 | | 3/s=4/5 | | 1/2n-5=7 | | a^-36=0 | | 72=k6 | | 2x-7^2=16 | | 7x+8=-3x-7 | | 72=k(6) | | 5(2x+4)-4x=15 | | 1/2(n-10)=7 | | x5+12=5 | | 35+v=6v | | 72=k(10) | | x+.25x=35.57 | | 72=k10 | | k/6.9+85.5=43.4 | | −n+4=n−10 | | 11/w=8/5 | | n^2+6=-30 |