If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2-5x=0
a = 10; b = -5; c = 0;
Δ = b2-4ac
Δ = -52-4·10·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-5}{2*10}=\frac{0}{20} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+5}{2*10}=\frac{10}{20} =1/2 $
| -5+5(5n-2)=-15-3n | | a=9/10 | | (2m)/(5)=(1)/(3)(2m-12) | | 2x^2+3x-5=3 | | 0,8/x=0,2 | | 2x^2+3x-5=1 | | 3(4y-1)=2(5y+1/2)= | | -8+4n=2(n-7) | | 2x^2+3x-5=2 | | 3.5-0.02x=2.3 | | 8.719=(x)x8.960+(1-x)x7.140 | | 4n+3=2n | | 4y+10=2y+13 | | -9(3b+4)+(28b-1)=0 | | 5k=8k+9 | | 0.136=(x)+(1-x) | | 16x^2+47x-3=0 | | 2(3a+1)=-4a | | 5(y-2y)=14-4y | | 5x/3x=4 | | 183-w=228 | | 6y+6÷12+4y=0 | | x-5(3x-1)=117 | | (X+2)2+3(x+2)=0 | | 6m+4/4-m=8 | | 4r+8=-16 | | C(x)=15x+100 | | 121-49x2=0 | | -2(8-6n)=-30+5n | | 5x-28=x+0.8+11.2 | | -7k+21=-7(2+6k) | | x²+3x=(x-13)(x+2)+222 |