If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2+5x-20=0
a = 10; b = 5; c = -20;
Δ = b2-4ac
Δ = 52-4·10·(-20)
Δ = 825
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{825}=\sqrt{25*33}=\sqrt{25}*\sqrt{33}=5\sqrt{33}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-5\sqrt{33}}{2*10}=\frac{-5-5\sqrt{33}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+5\sqrt{33}}{2*10}=\frac{-5+5\sqrt{33}}{20} $
| 4x+13=1/2(86-74) | | 12y+8-2y+6=40+6+8 | | x+-14=-19 | | 3(2i-4)+2=6-4(2i-3) | | 360=10x+x^2+(5x+36) | | Y=-1.6x+16 | | 3/4t-2=1/4 | | Y=-45x+180 | | 0=2x^2+8x | | 0.4x+1.2=3.2 | | 8-5x=-3 | | 3^2x-6=5.3^x | | a=5(10)+3 | | 4x+(14x-10+(8x+5=180 | | x(5+10)=30 | | 4+3(7+5(m+2))=10 | | 2^3x+1=5 | | y+(-2)=-19 | | 5(d+3)+2=2(d-3)+5 | | -4(4a-6)+8a=-40 | | 21-g=15 | | 6x^2+5x^2=187 | | 85.5+y=100 | | 85.5y=100 | | 68-x=0 | | 2-2x=5+7 | | 39.25x+12=247.50 | | 11.5x+50=188 | | 5x-4.36=24.26 | | 11.5x+60=129 | | -888.50-62.75x=2143.50 | | 18-3(z+5)=3z-12 |