10x-(x-16)=2x(5+x)

Simple and best practice solution for 10x-(x-16)=2x(5+x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 10x-(x-16)=2x(5+x) equation:



10x-(x-16)=2x(5+x)
We move all terms to the left:
10x-(x-16)-(2x(5+x))=0
We add all the numbers together, and all the variables
10x-(x-16)-(2x(x+5))=0
We get rid of parentheses
10x-x-(2x(x+5))+16=0
We calculate terms in parentheses: -(2x(x+5)), so:
2x(x+5)
We multiply parentheses
2x^2+10x
Back to the equation:
-(2x^2+10x)
We add all the numbers together, and all the variables
9x-(2x^2+10x)+16=0
We get rid of parentheses
-2x^2+9x-10x+16=0
We add all the numbers together, and all the variables
-2x^2-1x+16=0
a = -2; b = -1; c = +16;
Δ = b2-4ac
Δ = -12-4·(-2)·16
Δ = 129
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-\sqrt{129}}{2*-2}=\frac{1-\sqrt{129}}{-4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+\sqrt{129}}{2*-2}=\frac{1+\sqrt{129}}{-4} $

See similar equations:

| 2x-2x-12+9=5x-2x+9+9 | | 29+40+2y=180 | | -3x=153 | | 1/2x(x-2/3)=5/4 | | 36+46+2-3x=180 | | 1-2x-4=2-3x+1 | | 7(x=7)=5x+59 | | 2y-3/4=8 | | -9y=-10y-10 | | 2x-2x-12=5x-2x+9 | | 3x2=324 | | 3x+5=-4+4x | | 2x+4+1x+10+90=180 | | 3y+y=11 | | -(x-9)+4(-2x+1)-7(3x-5)=-4(8x-12)+3 | | 4x-3=4x=2 | | 2x-9=11,10 | | -48t=56 | | 22 + 54x = −20 + 60x | | -2(x+3)=3(x-2) | | 123=5x+18 | | 18=9x(+8) | | 2.4x+3.7=10.9 | | 1x+41=7x+35 | | 4b-8=2b*3 | | -3(2x-2)=-2(x+7) | | 123+5x+18=180 | | -3(-c-18)=-18 | | 7(n+6)=4(n-15) | | (3x+81)=(3x+6) | | 2x+1+x+8=36 | | 13x+3=75 |

Equations solver categories