If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x(2x+5)=20
We move all terms to the left:
10x(2x+5)-(20)=0
We multiply parentheses
20x^2+50x-20=0
a = 20; b = 50; c = -20;
Δ = b2-4ac
Δ = 502-4·20·(-20)
Δ = 4100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4100}=\sqrt{100*41}=\sqrt{100}*\sqrt{41}=10\sqrt{41}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(50)-10\sqrt{41}}{2*20}=\frac{-50-10\sqrt{41}}{40} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(50)+10\sqrt{41}}{2*20}=\frac{-50+10\sqrt{41}}{40} $
| Y=100x+4 | | 20+y=18+22 | | -12=-8x-4+7x | | 2/3b+19=15 | | 20.23=4g+3.75 | | 32x+98=32x+69 | | -2k+3=9 | | -3-x6x=2 | | 9a=28=4a+3 | | 3x-28-5x=22 | | 3*12+2b=84 | | 7(2+2n)-4(n+3)=-78 | | 30+6p=7(p | | -16+k=12 | | -4(2x-5)=3x+28+1x+16 | | 2k-2=24 | | -4+4m-5=-4 | | 26-4v=9v+10 | | -3(w+4)=4w=5 | | 4(2x-1)=5(1-4x)-4 | | 3(x+2)/4=3x-1 | | 15(x+1)=5(2x+1 | | -x-20=5x+9 | | 4(x-8)=-32+5x | | 4x+5=-19- | | 9x+3=33-x | | 2x+x^2-5x=70 | | 10+5z=40 | | -7+2(-6a-5)=43 | | 7x+34+9x+46=360 | | 4(2x+1)=13x+3-5x+1 | | −2=65+x |