If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10=(4x+2)(10x-1)
We move all terms to the left:
10-((4x+2)(10x-1))=0
We multiply parentheses ..
-((+40x^2-4x+20x-2))+10=0
We calculate terms in parentheses: -((+40x^2-4x+20x-2)), so:We get rid of parentheses
(+40x^2-4x+20x-2)
We get rid of parentheses
40x^2-4x+20x-2
We add all the numbers together, and all the variables
40x^2+16x-2
Back to the equation:
-(40x^2+16x-2)
-40x^2-16x+2+10=0
We add all the numbers together, and all the variables
-40x^2-16x+12=0
a = -40; b = -16; c = +12;
Δ = b2-4ac
Δ = -162-4·(-40)·12
Δ = 2176
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2176}=\sqrt{64*34}=\sqrt{64}*\sqrt{34}=8\sqrt{34}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-8\sqrt{34}}{2*-40}=\frac{16-8\sqrt{34}}{-80} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+8\sqrt{34}}{2*-40}=\frac{16+8\sqrt{34}}{-80} $
| 5x^2=-9x+5 | | 3(1+6x)=180 | | 2(s-8)=14 | | 15=-(-5+n) | | 6x2+24x-132=0 | | 4+8=-2(3x-6 | | 8,m=4 | | 29=x-26/2 | | 6/8+5x=2x+7 | | 16g+8-4=116 | | -2(-5x+5)=-3x+4=-34 | | -7/2x=-35 | | 70a-28+6=482 | | 8(4x-x)=-5x-32 | | 10x−4x+7=5x | | (2r)/(3)-7=r+5 | | 7(10a−4)+6=482 | | 2x^2=178 | | 4/5w+2=-2 | | 2(p+8)-8=16 | | Y=16x^2+90x | | 16x–15=-5x+48 | | x-3=3/2x+1 | | 8y-3=6y-(1-2y) | | 9n-8n+5=5 | | Z=-3a | | 7b−52 =6b−57 | | (3p+1)^2=12 | | -17+25=-2(x+4) | | 2(h+1)=7h-7 | | -23+6x=-(x-5) | | -2/5x+2/15=2/2 |