If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+24x-132=0
a = 6; b = 24; c = -132;
Δ = b2-4ac
Δ = 242-4·6·(-132)
Δ = 3744
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3744}=\sqrt{144*26}=\sqrt{144}*\sqrt{26}=12\sqrt{26}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-12\sqrt{26}}{2*6}=\frac{-24-12\sqrt{26}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+12\sqrt{26}}{2*6}=\frac{-24+12\sqrt{26}}{12} $
| 4+8=-2(3x-6 | | 8,m=4 | | 29=x-26/2 | | 6/8+5x=2x+7 | | 16g+8-4=116 | | -2(-5x+5)=-3x+4=-34 | | -7/2x=-35 | | 70a-28+6=482 | | 8(4x-x)=-5x-32 | | 10x−4x+7=5x | | (2r)/(3)-7=r+5 | | 7(10a−4)+6=482 | | 2x^2=178 | | 4/5w+2=-2 | | 2(p+8)-8=16 | | Y=16x^2+90x | | 16x–15=-5x+48 | | x-3=3/2x+1 | | 8y-3=6y-(1-2y) | | 9n-8n+5=5 | | Z=-3a | | 7b−52 =6b−57 | | (3p+1)^2=12 | | -17+25=-2(x+4) | | 2(h+1)=7h-7 | | -23+6x=-(x-5) | | -2/5x+2/15=2/2 | | -11x+7=-5(x-5)-7(x+3) | | 2x–5/2x=6–8 | | 1/2(r+5)=7.5 | | 7x/8-6=8 | | (2/3)(3/2x)=(2/3)(5) |