If it's not what You are looking for type in the equation solver your own equation and let us solve it.
100=(8+2x)(10+2x)
We move all terms to the left:
100-((8+2x)(10+2x))=0
We add all the numbers together, and all the variables
-((2x+8)(2x+10))+100=0
We multiply parentheses ..
-((+4x^2+20x+16x+80))+100=0
We calculate terms in parentheses: -((+4x^2+20x+16x+80)), so:We get rid of parentheses
(+4x^2+20x+16x+80)
We get rid of parentheses
4x^2+20x+16x+80
We add all the numbers together, and all the variables
4x^2+36x+80
Back to the equation:
-(4x^2+36x+80)
-4x^2-36x-80+100=0
We add all the numbers together, and all the variables
-4x^2-36x+20=0
a = -4; b = -36; c = +20;
Δ = b2-4ac
Δ = -362-4·(-4)·20
Δ = 1616
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1616}=\sqrt{16*101}=\sqrt{16}*\sqrt{101}=4\sqrt{101}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-36)-4\sqrt{101}}{2*-4}=\frac{36-4\sqrt{101}}{-8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-36)+4\sqrt{101}}{2*-4}=\frac{36+4\sqrt{101}}{-8} $
| 5k+7=2(4K-14)+53 | | X+2=0x-2=0x2-4=0 | | q=-3+4q | | 6x-1(3x+8)=16x | | 5+5=10x2=20 | | (k}4+3=14 | | -6u=-3-7u | | -9=3(2-v)+2-v | | 7(3a+4)=11(a+-1)+19 | | (2x-6)x=180 | | 9x-3(2x-3)=15 | | 21=3w-12+5w | | 7(3a+4)=11(a+-19) | | -9=3(2–v)+2-v | | 3x+8=23 | | 7a-4=-14+5a | | 6x-1=360 | | 6m+9-6=7 | | -10r=-8r-4 | | 2-2x/3=3/7 | | 6(0.07m+26.90+0.10(26.90))=206.10 | | 3x+1+2x=22+3-4 | | 7a-5=-14+5a | | -7/t=8/56 | | 5y−8=32 | | 8=-2v/5 | | 5N-4(n+9)=2n-3 | | (x+3.2)/(7.6)=-2.9 | | 4x-16+2×+16=180 | | 2y/9=-6 | | -4d+3(1-2d)=3(5-2d) | | 2x–(2–x)=1 |