1/9x+6=1/3x

Simple and best practice solution for 1/9x+6=1/3x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/9x+6=1/3x equation:



1/9x+6=1/3x
We move all terms to the left:
1/9x+6-(1/3x)=0
Domain of the equation: 9x!=0
x!=0/9
x!=0
x∈R
Domain of the equation: 3x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
1/9x-(+1/3x)+6=0
We get rid of parentheses
1/9x-1/3x+6=0
We calculate fractions
3x/27x^2+(-9x)/27x^2+6=0
We multiply all the terms by the denominator
3x+(-9x)+6*27x^2=0
Wy multiply elements
162x^2+3x+(-9x)=0
We get rid of parentheses
162x^2+3x-9x=0
We add all the numbers together, and all the variables
162x^2-6x=0
a = 162; b = -6; c = 0;
Δ = b2-4ac
Δ = -62-4·162·0
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{36}=6$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-6}{2*162}=\frac{0}{324} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+6}{2*162}=\frac{12}{324} =1/27 $

See similar equations:

| −9.5x+0.37=−3.43 | | -7.5x+0.26=-2.74 | | p/2=1 | | 1/2x-120=1/3x | | -13=-9+n÷4 | | 3/10x+560=4/5x | | 2(2w-6)=6(w-6)=14 | | x-5.4=9.74 | | x-82=69 | | (20x-50)=(10x-5) | | 12y+5y-6)=4 | | 16+x=38 | | .8=22/x | | x-12+x=64 | | -15+5x=4(3x+7 | | 13u=8u+25 | | 16y=-88+5y | | 2x^2-17=19 | | x-80+x=670 | | 10=26v+20 | | 2w=7w+1 | | 3v/5=45 | | 8x-x=90 | | 7(c-17)=-49 | | 0.8x=0.64 | | 19=-4t-9 | | -6(v+1)+8v=(v-3) | | 4(c-16)=-44 | | 7(4x-9)=-27+6x | | 8(2+3z)+1=2-10(z+1) | | 2/5y-9=-19 | | 8x-12=6x-20 |

Equations solver categories