1/5h+4=3/4h+8

Simple and best practice solution for 1/5h+4=3/4h+8 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/5h+4=3/4h+8 equation:



1/5h+4=3/4h+8
We move all terms to the left:
1/5h+4-(3/4h+8)=0
Domain of the equation: 5h!=0
h!=0/5
h!=0
h∈R
Domain of the equation: 4h+8)!=0
h∈R
We get rid of parentheses
1/5h-3/4h-8+4=0
We calculate fractions
4h/20h^2+(-15h)/20h^2-8+4=0
We add all the numbers together, and all the variables
4h/20h^2+(-15h)/20h^2-4=0
We multiply all the terms by the denominator
4h+(-15h)-4*20h^2=0
Wy multiply elements
-80h^2+4h+(-15h)=0
We get rid of parentheses
-80h^2+4h-15h=0
We add all the numbers together, and all the variables
-80h^2-11h=0
a = -80; b = -11; c = 0;
Δ = b2-4ac
Δ = -112-4·(-80)·0
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{121}=11$
$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-11)-11}{2*-80}=\frac{0}{-160} =0 $
$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-11)+11}{2*-80}=\frac{22}{-160} =-11/80 $

See similar equations:

| 274=145-u | | 10=4n+12 | | 6x/10+26=90 | | 3(2x-9)+6=15 | | 2t=3t+7 | | -w+259=203 | | (2x-19)+(1/2x)=90 | | -5(4x-10)=26 | | u/2-16=24 | | x-5=11*x+5=9 | | -6x+8(x+2)=6 | | 7-2(m+8)=0 | | 3(2x-6)-10=-4 | | k-25=-35 | | -15=-7u+5(u-7) | | n-(-15)=17 | | 10x-22=67 | | n-(-15)=177 | | -13=1-5p+1 | | 4x=6x+20=180 | | 8a-10-4a+6+a=0 | | 3(2x-6)-10=4 | | -22+x=-17 | | 4=2w+5(w+5) | | 2(v+1)=4v=3(2v-1)+8 | | r+(-22)=-52 | | 5+(2n+10)=6 | | 13/2+4x=5x-5/2 | | 10x-32=65 | | -40=2(-x-2) | | 7x+12=5x+10 | | 6-n=-18 |

Equations solver categories