(2x-19)+(1/2x)=90

Simple and best practice solution for (2x-19)+(1/2x)=90 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x-19)+(1/2x)=90 equation:



(2x-19)+(1/2x)=90
We move all terms to the left:
(2x-19)+(1/2x)-(90)=0
Domain of the equation: 2x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(2x-19)+(+1/2x)-90=0
We get rid of parentheses
2x+1/2x-19-90=0
We multiply all the terms by the denominator
2x*2x-19*2x-90*2x+1=0
Wy multiply elements
4x^2-38x-180x+1=0
We add all the numbers together, and all the variables
4x^2-218x+1=0
a = 4; b = -218; c = +1;
Δ = b2-4ac
Δ = -2182-4·4·1
Δ = 47508
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{47508}=\sqrt{4*11877}=\sqrt{4}*\sqrt{11877}=2\sqrt{11877}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-218)-2\sqrt{11877}}{2*4}=\frac{218-2\sqrt{11877}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-218)+2\sqrt{11877}}{2*4}=\frac{218+2\sqrt{11877}}{8} $

See similar equations:

| -5(4x-10)=26 | | u/2-16=24 | | x-5=11*x+5=9 | | -6x+8(x+2)=6 | | 7-2(m+8)=0 | | 3(2x-6)-10=-4 | | k-25=-35 | | -15=-7u+5(u-7) | | n-(-15)=17 | | 10x-22=67 | | n-(-15)=177 | | -13=1-5p+1 | | 4x=6x+20=180 | | 8a-10-4a+6+a=0 | | 3(2x-6)-10=4 | | -22+x=-17 | | 4=2w+5(w+5) | | 2(v+1)=4v=3(2v-1)+8 | | r+(-22)=-52 | | 5+(2n+10)=6 | | 13/2+4x=5x-5/2 | | 10x-32=65 | | -40=2(-x-2) | | 7x+12=5x+10 | | 6-n=-18 | | -2h+11+3h-4=0 | | Q=500-3p | | m2=72,m3 | | m+(-12)=-30 | | 10x-21=62 | | 4-21=x+5 | | n+(-12)=9 |

Equations solver categories