If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/4(28x+8)-4=-1/2(14x-6)
We move all terms to the left:
1/4(28x+8)-4-(-1/2(14x-6))=0
Domain of the equation: 4(28x+8)!=0
x∈R
Domain of the equation: 2(14x-6))!=0We calculate fractions
x∈R
(2x1/(4(28x+8)*2(14x-6)))+(-(-4x2)/(4(28x+8)*2(14x-6)))-4=0
We calculate terms in parentheses: +(2x1/(4(28x+8)*2(14x-6))), so:
2x1/(4(28x+8)*2(14x-6))
We multiply all the terms by the denominator
2x1
We add all the numbers together, and all the variables
2x
Back to the equation:
+(2x)
We calculate terms in parentheses: +(-(-4x2)/(4(28x+8)*2(14x-6))), so:determiningTheFunctionDomain 4x^2+2x-4=0
-(-4x2)/(4(28x+8)*2(14x-6))
We add all the numbers together, and all the variables
-(-4x^2)/(4(28x+8)*2(14x-6))
We multiply all the terms by the denominator
-(-4x^2)
We get rid of parentheses
4x^2
Back to the equation:
+(4x^2)
a = 4; b = 2; c = -4;
Δ = b2-4ac
Δ = 22-4·4·(-4)
Δ = 68
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{68}=\sqrt{4*17}=\sqrt{4}*\sqrt{17}=2\sqrt{17}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{17}}{2*4}=\frac{-2-2\sqrt{17}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{17}}{2*4}=\frac{-2+2\sqrt{17}}{8} $
| -16u-6u-10=12 | | 3/8(x)=1/8 | | 0=2x^2-6x+5 | | -3x+22=25 | | 0=-3x^2+x+12 | | 5(7+2x)=155 | | 2.7=w*1/3 | | -4(7−2x)=3(x+4)-28−8x=3x+12-28=11x+12-40=11x-40/11 | | 15x-(7x-8)=64 | | -4(7−2x)=3(x+4)-28−8x=3x+12-28=11x+12-40=11x-4011=x | | -4(6+x)=-4 | | Y=-3x^2+x+12 | | -7n-6=57 | | 7=3h-2 | | 2x=4(x-1)/3 | | p+5-5p=-19 | | 21=6w−3 | | x/1000=0.160 | | (5x-30)+2x=180 | | x/100=0.80 | | (1/2)x+(1/3)x+(1/9)x=17 | | -9m=-180 | | -2(6-7x)=86 | | 2/3b=-b | | (1/2)n+3=-2 | | -7b+5(7-7b)=-133 | | 6(x+7)+3x=-42 | | 4y-13=18 | | 4t+3÷5-t-3÷2=0. | | b-10/4=b/4 | | 8–3x+2=10+3x | | 3x*23/x=16x+3 |