If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(1/2)x+(1/3)x+(1/9)x=17
We move all terms to the left:
(1/2)x+(1/3)x+(1/9)x-(17)=0
Domain of the equation: 2)x!=0
x!=0/1
x!=0
x∈R
Domain of the equation: 3)x!=0
x!=0/1
x!=0
x∈R
Domain of the equation: 9)x!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
(+1/2)x+(+1/3)x+(+1/9)x-17=0
We multiply parentheses
x^2+x^2+x^2-17=0
We add all the numbers together, and all the variables
3x^2-17=0
a = 3; b = 0; c = -17;
Δ = b2-4ac
Δ = 02-4·3·(-17)
Δ = 204
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{204}=\sqrt{4*51}=\sqrt{4}*\sqrt{51}=2\sqrt{51}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{51}}{2*3}=\frac{0-2\sqrt{51}}{6} =-\frac{2\sqrt{51}}{6} =-\frac{\sqrt{51}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{51}}{2*3}=\frac{0+2\sqrt{51}}{6} =\frac{2\sqrt{51}}{6} =\frac{\sqrt{51}}{3} $
| -9m=-180 | | -2(6-7x)=86 | | 2/3b=-b | | (1/2)n+3=-2 | | -7b+5(7-7b)=-133 | | 6(x+7)+3x=-42 | | 4y-13=18 | | 4t+3÷5-t-3÷2=0. | | b-10/4=b/4 | | 8–3x+2=10+3x | | 3x*23/x=16x+3 | | 7x+4÷5=-2 | | 2(x+3)=-4x+12 | | 7x-10=38 | | (3n+2)=15 | | 8a-4aa=5 | | 3y-(2y-1)=5 | | (6x+2)/2=13 | | -3(x+6)=45 | | -8n+7n=4 | | 2z}3-7=29 | | 46=c-27 | | –17.4=y+–5.4 | | 49^3x×343x=49 | | Y=3n-1 | | Sx5-41=104 | | 493x×343x=49 | | (S)x5-41=104 | | 2)493x×343x=49 | | Y=-3x+5/Y=x+1 | | 3x+5+7x=85 | | 10+3t=37 |