If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/4(20x+32)-17=-1/2(18x-6)
We move all terms to the left:
1/4(20x+32)-17-(-1/2(18x-6))=0
Domain of the equation: 4(20x+32)!=0
x∈R
Domain of the equation: 2(18x-6))!=0We calculate fractions
x∈R
(2x1/(4(20x+32)*2(18x-6)))+(-(-4x2)/(4(20x+32)*2(18x-6)))-17=0
We calculate terms in parentheses: +(2x1/(4(20x+32)*2(18x-6))), so:
2x1/(4(20x+32)*2(18x-6))
We multiply all the terms by the denominator
2x1
We add all the numbers together, and all the variables
2x
Back to the equation:
+(2x)
We calculate terms in parentheses: +(-(-4x2)/(4(20x+32)*2(18x-6))), so:determiningTheFunctionDomain 4x^2+2x-17=0
-(-4x2)/(4(20x+32)*2(18x-6))
We add all the numbers together, and all the variables
-(-4x^2)/(4(20x+32)*2(18x-6))
We multiply all the terms by the denominator
-(-4x^2)
We get rid of parentheses
4x^2
Back to the equation:
+(4x^2)
a = 4; b = 2; c = -17;
Δ = b2-4ac
Δ = 22-4·4·(-17)
Δ = 276
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{276}=\sqrt{4*69}=\sqrt{4}*\sqrt{69}=2\sqrt{69}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{69}}{2*4}=\frac{-2-2\sqrt{69}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{69}}{2*4}=\frac{-2+2\sqrt{69}}{8} $
| 6y-2=6y-y | | -8z+7=-10 | | 1/4(20x=32)-17=-1/2(18x-6) | | x−7=2x−8 | | 3n+6=54-n | | 1+2x+2x=-7 | | ∣x−7∣=2x−8 | | 9y+2-6y=5+2y+7 | | 12x=-3x+45 | | y-2-9y=4 | | 7a+15=4a | | 101/5+d=23 | | 3/2x=123 | | 11(x-3)=5(x-11) | | 7y-27=-90 | | 13x+7+(26x+7)-1=180 | | -41-(-45)=x/7 | | F(x)=X^5-4x^3+2x | | 5r=32=8r=17 | | 9y+5-y=3+7y-10 | | 535=x28 | | 7x+6+35=90 | | -2d+16=12 | | 3(3z-2)-3(4-4z)=6 | | (d−8)*−2=12 | | 15u^2-11u+2=0 | | 15–4(n-2)=27 | | 3x+4+64+76=180 | | X/3+13=x5-12 | | u-3/4=1/3 | | 4x+34=4 | | 6=v-8 |