1/3x=180-x

Simple and best practice solution for 1/3x=180-x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/3x=180-x equation:



1/3x=180-x
We move all terms to the left:
1/3x-(180-x)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
We add all the numbers together, and all the variables
1/3x-(-1x+180)=0
We get rid of parentheses
1/3x+1x-180=0
We multiply all the terms by the denominator
1x*3x-180*3x+1=0
Wy multiply elements
3x^2-540x+1=0
a = 3; b = -540; c = +1;
Δ = b2-4ac
Δ = -5402-4·3·1
Δ = 291588
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{291588}=\sqrt{8836*33}=\sqrt{8836}*\sqrt{33}=94\sqrt{33}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-540)-94\sqrt{33}}{2*3}=\frac{540-94\sqrt{33}}{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-540)+94\sqrt{33}}{2*3}=\frac{540+94\sqrt{33}}{6} $

See similar equations:

| 2x-9/3x-2=3 | | -7m+4+9m=2(m+3)-4 | | -8n+2(n-2)=-2n-6 | | (7x-4)=(9x-40) | | 2(u+3)=3(1-u)+23u | | 5(x-11)/3=3(1+x)/2 | | 3p-7=3p-6-1 | | 0.2(x-10)+0.8x=3 | | 7x-5/5=2x+5/4 | | 1.6t-2.9=3.5 | | 4+5(p-1)+4=34 | | 3n/3-2/3=2n/4+12/4+n/6 | | 4+5(p-1)+4=32 | | (3n-2)/3=(2n+12)/4+n/6 | | 1/2n-n/6=3+2/3 | | 6a-15+3a=28+38 | | 2n+4=24  | | -24×x=8/13 | | -1/3z-1/10=1/4z+7/15-3/10z | | 5y+10-28+2y=122 | | n*3=5 | | (2y+3)2=81 | | (2y+3)=81 | | 12-5w=-7(-w+6)+2(5w+2) | | 9(a-6)-5a=-6(a+4) | | 4x+20=-x-17 | | 9(2x-1)-3x=(12+x) | | t+6=-22 | | 8-3a/2=-7 | | x^2-14x-129=0 | | (3p+1)(*p-3)=0 | | 3a/5-2=7 |

Equations solver categories