1/3x+4/81x=-31

Simple and best practice solution for 1/3x+4/81x=-31 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/3x+4/81x=-31 equation:



1/3x+4/81x=-31
We move all terms to the left:
1/3x+4/81x-(-31)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 81x!=0
x!=0/81
x!=0
x∈R
We add all the numbers together, and all the variables
1/3x+4/81x+31=0
We calculate fractions
81x/243x^2+12x/243x^2+31=0
We multiply all the terms by the denominator
81x+12x+31*243x^2=0
We add all the numbers together, and all the variables
93x+31*243x^2=0
Wy multiply elements
7533x^2+93x=0
a = 7533; b = 93; c = 0;
Δ = b2-4ac
Δ = 932-4·7533·0
Δ = 8649
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{8649}=93$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(93)-93}{2*7533}=\frac{-186}{15066} =-1/81 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(93)+93}{2*7533}=\frac{0}{15066} =0 $

See similar equations:

| 32=-6+2x | | -1/4u+3/2=-6 | | 3(x+5)=-2(-6-x)2x | | -22/3w-11/3=4 | | 11/2-u=9/4 | | G(x)=x+1÷7 | | 0.2n=9=8(0.4-1) | | 2(b-4)-4(2b+1)=0 | | -8.5a+9.3-8.3-14.54=8.2a-9.4 | | -3-k=-18 | | 8-1/4p=-1/2p | | -6m-5m=11 | | x+(3x+38)+(x+67)=180 | | -6(w+3)-3w/2=-11-9w | | x2−10x+25=−20 | | 5x=7=37 | | -112=6x-4 | | Y=15x-5/5 | | 9(2k+3)+2=11(1k-5) | | 3x2+16=-14x | | x^2−10x+25=−20 | | 8=-9v-10 | | -1/2-4/9a=2/15 | | -5u-18=6(u+8) | | -4p-8=16 | | 3.5x-12=1.5(x-2) | | -9-n=-13 | | 21.5-16*9=x | | 28=2b+8 | | x^2−45=0 | | 8x+12-3x+18=-5 | | -4n-3n=-7 |

Equations solver categories