3(x+5)=-2(-6-x)2x

Simple and best practice solution for 3(x+5)=-2(-6-x)2x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3(x+5)=-2(-6-x)2x equation:



3(x+5)=-2(-6-x)2x
We move all terms to the left:
3(x+5)-(-2(-6-x)2x)=0
We add all the numbers together, and all the variables
3(x+5)-(-2(-1x-6)2x)=0
We multiply parentheses
3x-(-2(-1x-6)2x)+15=0
We calculate terms in parentheses: -(-2(-1x-6)2x), so:
-2(-1x-6)2x
We multiply parentheses
4x^2+24x
Back to the equation:
-(4x^2+24x)
We get rid of parentheses
-4x^2+3x-24x+15=0
We add all the numbers together, and all the variables
-4x^2-21x+15=0
a = -4; b = -21; c = +15;
Δ = b2-4ac
Δ = -212-4·(-4)·15
Δ = 681
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-21)-\sqrt{681}}{2*-4}=\frac{21-\sqrt{681}}{-8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-21)+\sqrt{681}}{2*-4}=\frac{21+\sqrt{681}}{-8} $

See similar equations:

| -22/3w-11/3=4 | | 11/2-u=9/4 | | G(x)=x+1÷7 | | 0.2n=9=8(0.4-1) | | 2(b-4)-4(2b+1)=0 | | -8.5a+9.3-8.3-14.54=8.2a-9.4 | | -3-k=-18 | | 8-1/4p=-1/2p | | -6m-5m=11 | | x+(3x+38)+(x+67)=180 | | -6(w+3)-3w/2=-11-9w | | x2−10x+25=−20 | | 5x=7=37 | | -112=6x-4 | | Y=15x-5/5 | | 9(2k+3)+2=11(1k-5) | | 3x2+16=-14x | | x^2−10x+25=−20 | | 8=-9v-10 | | -1/2-4/9a=2/15 | | -5u-18=6(u+8) | | -4p-8=16 | | 3.5x-12=1.5(x-2) | | -9-n=-13 | | 21.5-16*9=x | | 28=2b+8 | | x^2−45=0 | | 8x+12-3x+18=-5 | | -4n-3n=-7 | | 4xx10=50 | | -2x=3x^-8 | | 170x=10x |

Equations solver categories