If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/3p+1/2p+7=7/6+5+4
We move all terms to the left:
1/3p+1/2p+7-(7/6+5+4)=0
Domain of the equation: 3p!=0
p!=0/3
p!=0
p∈R
Domain of the equation: 2p!=0We add all the numbers together, and all the variables
p!=0/2
p!=0
p∈R
1/3p+1/2p+7-(7/6+9)=0
We get rid of parentheses
1/3p+1/2p+7-9-7/6=0
We calculate fractions
(-84p^2)/216p^2+72p/216p^2+108p/216p^2+7-9=0
We add all the numbers together, and all the variables
(-84p^2)/216p^2+72p/216p^2+108p/216p^2-2=0
We multiply all the terms by the denominator
(-84p^2)+72p+108p-2*216p^2=0
We add all the numbers together, and all the variables
(-84p^2)+180p-2*216p^2=0
Wy multiply elements
(-84p^2)-432p^2+180p=0
We get rid of parentheses
-84p^2-432p^2+180p=0
We add all the numbers together, and all the variables
-516p^2+180p=0
a = -516; b = 180; c = 0;
Δ = b2-4ac
Δ = 1802-4·(-516)·0
Δ = 32400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{32400}=180$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(180)-180}{2*-516}=\frac{-360}{-1032} =15/43 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(180)+180}{2*-516}=\frac{0}{-1032} =0 $
| -7(5x-1)=273 | | (1/5)^m+4=5 | | 3y-14=34-y | | 3-(r/8)=-(9/2) | | 15-7m=-2m | | x^2+3x+162=180 | | s=1+1/2^2 | | 3(5x-1)-2(2x+3)=6x+1 | | s=1+122+132+142+152+162+172+182+192+1102 | | 6/5u=-10 | | 4(3x-5)=44 | | 5(7-2x)=6(3x+1)-(4-27x) | | 8(5r-4)(5r-1)=0 | | 45+(x+x)+x=180 | | x*x+3x-10=60 | | $3+$7.50x=$25.00 | | 30+10w=300 | | Y=6x(4,24) | | 3(2x+6)-5(x+4)=11 | | 3r-4÷5=7 | | 3x-12+8x=24 | | 6x²-54=42 | | 4x–5=13+2x | | 7x-11+14=180 | | 6(2x-8)+3=156(2x-8)+3=15 | | 1=1+6b=2b | | 4b=3b-8 | | 3w-13=-1 | | 64^2g+1=8^2g | | -1+7-4p=-p-9 | | (13x-32)+(7x+22)=180 | | x÷18=109.8 |