1/3+(8/45)z=15

Simple and best practice solution for 1/3+(8/45)z=15 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/3+(8/45)z=15 equation:



1/3+(8/45)z=15
We move all terms to the left:
1/3+(8/45)z-(15)=0
Domain of the equation: 45)z!=0
z!=0/1
z!=0
z∈R
determiningTheFunctionDomain (8/45)z-15+1/3=0
We add all the numbers together, and all the variables
(+8/45)z-15+1/3=0
We multiply parentheses
8z^2-15+1/3=0
We multiply all the terms by the denominator
8z^2*3+1-15*3=0
We add all the numbers together, and all the variables
8z^2*3-44=0
Wy multiply elements
24z^2-44=0
a = 24; b = 0; c = -44;
Δ = b2-4ac
Δ = 02-4·24·(-44)
Δ = 4224
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4224}=\sqrt{64*66}=\sqrt{64}*\sqrt{66}=8\sqrt{66}$
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{66}}{2*24}=\frac{0-8\sqrt{66}}{48} =-\frac{8\sqrt{66}}{48} =-\frac{\sqrt{66}}{6} $
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{66}}{2*24}=\frac{0+8\sqrt{66}}{48} =\frac{8\sqrt{66}}{48} =\frac{\sqrt{66}}{6} $

See similar equations:

| m2+13m+36=0 | | 2/x=4/28 | | 1/2-1/5-5=1/10(x+6) | | 2x+3x-8=x-6 | | 0.32y=1.952 | | -93+12x+2x=201 | | -51-11x+13x=15 | | 2/3x=3=1/4x-7 | | 1/3+8/45z=15 | | 1/2x+6=1/3 | | -38-8x+11x=55 | | 5-2(4-3x=9-2x+7 | | 14x+4=-8+2× | | g+29=87 | | 3(4+5c)=-(12c+18) | | 3t^2+6t-35=0 | | 7a+20=2a | | -97-9x+14x=78 | | 4a+3a=-7+2+9 | | 5p-4=3p+12 | | -6x+15x-133=128 | | 7w-9=5w-5 | | h^2=10 | | 2y=20+28 | | 11/2x+16=4-2/3x | | 10((2y+2)-y=2(8y-8) | | 7n+12=1.2(14n+24) | | 92=t+19 | | -31-11x+14x=53 | | 2+3y=4y-7 | | 22-17x+3x^2=0 | | j+27=61 |

Equations solver categories