If it's not what You are looking for type in the equation solver your own equation and let us solve it.
m2+13m+36=0
We add all the numbers together, and all the variables
m^2+13m+36=0
a = 1; b = 13; c = +36;
Δ = b2-4ac
Δ = 132-4·1·36
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-5}{2*1}=\frac{-18}{2} =-9 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+5}{2*1}=\frac{-8}{2} =-4 $
| 2/x=4/28 | | 1/2-1/5-5=1/10(x+6) | | 2x+3x-8=x-6 | | 0.32y=1.952 | | -93+12x+2x=201 | | -51-11x+13x=15 | | 2/3x=3=1/4x-7 | | 1/3+8/45z=15 | | 1/2x+6=1/3 | | -38-8x+11x=55 | | 5-2(4-3x=9-2x+7 | | 14x+4=-8+2× | | g+29=87 | | 3(4+5c)=-(12c+18) | | 3t^2+6t-35=0 | | 7a+20=2a | | -97-9x+14x=78 | | 4a+3a=-7+2+9 | | 5p-4=3p+12 | | -6x+15x-133=128 | | 7w-9=5w-5 | | h^2=10 | | 2y=20+28 | | 11/2x+16=4-2/3x | | 10((2y+2)-y=2(8y-8) | | 7n+12=1.2(14n+24) | | 92=t+19 | | -31-11x+14x=53 | | 2+3y=4y-7 | | 22-17x+3x^2=0 | | j+27=61 | | b+-31=33 |