1/2x+7=1/5x-5

Simple and best practice solution for 1/2x+7=1/5x-5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/2x+7=1/5x-5 equation:



1/2x+7=1/5x-5
We move all terms to the left:
1/2x+7-(1/5x-5)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
Domain of the equation: 5x-5)!=0
x∈R
We get rid of parentheses
1/2x-1/5x+5+7=0
We calculate fractions
5x/10x^2+(-2x)/10x^2+5+7=0
We add all the numbers together, and all the variables
5x/10x^2+(-2x)/10x^2+12=0
We multiply all the terms by the denominator
5x+(-2x)+12*10x^2=0
Wy multiply elements
120x^2+5x+(-2x)=0
We get rid of parentheses
120x^2+5x-2x=0
We add all the numbers together, and all the variables
120x^2+3x=0
a = 120; b = 3; c = 0;
Δ = b2-4ac
Δ = 32-4·120·0
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{9}=3$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3}{2*120}=\frac{-6}{240} =-1/40 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3}{2*120}=\frac{0}{240} =0 $

See similar equations:

| 23x+16=−34x+1 | | (3x*3=16x+12)+(-16-12) | | 9-51/5x-3=(-2x+1) | | 1=4x-5x+3 | | 4x2+8x–6=0 | | 3(4x-4)=20 | | |-6x|=6 | | c3–3=-5 | | -6x-12(-11x+8)=-10(x-4) | | -16+9y=2 | | 11-n=-7(3+4n)-5n | | .75=a/a+22 | | 4p-1=5(p-1)-2(7-4p) | | 3x=6x2 | | 5j+(-16=-76 | | X/4-x-6/5=2 | | -2(2x+7)=-28-6x | | 2x+53=603 | | 15-3(2-4x)-7x=11(x-2)+3x | | 4x-1=10x+1 | | 3(-6+5y)-7y=22 | | 3(-6+5y)-7y=23 | | 5x+12=4x+42 | | 4(r+2.5)-6r=11.5 | | 17=x+2+4x | | 7x-3=7x+10 | | 5n+3(-8-3n)=-12-6n | | 64+2x=360 | | (225-3a)-a=25 | | 35+5x=360 | | 4x2-78=5x2+19x | | 8(x=2)=2x=16 |

Equations solver categories