If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/2r+3/2r-2=1/4r+6
We move all terms to the left:
1/2r+3/2r-2-(1/4r+6)=0
Domain of the equation: 2r!=0
r!=0/2
r!=0
r∈R
Domain of the equation: 4r+6)!=0We get rid of parentheses
r∈R
1/2r+3/2r-1/4r-6-2=0
We calculate fractions
(12r+1)/8r^2+(-2r)/8r^2-6-2=0
We add all the numbers together, and all the variables
(12r+1)/8r^2+(-2r)/8r^2-8=0
We multiply all the terms by the denominator
(12r+1)+(-2r)-8*8r^2=0
Wy multiply elements
-64r^2+(12r+1)+(-2r)=0
We get rid of parentheses
-64r^2+12r-2r+1=0
We add all the numbers together, and all the variables
-64r^2+10r+1=0
a = -64; b = 10; c = +1;
Δ = b2-4ac
Δ = 102-4·(-64)·1
Δ = 356
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{356}=\sqrt{4*89}=\sqrt{4}*\sqrt{89}=2\sqrt{89}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{89}}{2*-64}=\frac{-10-2\sqrt{89}}{-128} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{89}}{2*-64}=\frac{-10+2\sqrt{89}}{-128} $
| 5(12-3p)=p+28 | | (1/4)+(1/2)t=4 | | 10x19=319 | | 0.25(3x+16)=7(9-2x) | | 8+8h=-9-4h-5h | | 3(1+2x)=5(x+1)-8 | | (2x)/(3)+5=15 | | 10x-6=50 | | p/3=16/12 | | 16-4y+3y=27 | | 15=-15+-2q | | 2(3x+4)-4x=18-(2x+2) | | 76=9x | | 483+18g=462+21g | | 5(5-2m)=3+m | | 2975+145.5x=5448.5 | | 4x+13=2.25x-7 | | 5.75t+7=14.5t+14 | | -2+(x)/(2)=12 | | -2n+2n=2(1-4n)+7(n+2) | | 4(w-5)-6w=-32 | | y/3+11=14 | | -6.7(-3x+5.6)-0.1=-8.4(4-x) | | .5-2/3x=1/4 | | N+5=4n-13 | | (x)/(3)+6=10 | | 5x-14x=3x | | 17x+21=-116 | | |2x+8|=12 | | 3m-6=5-m | | 2+3(3v-3)=-5(3v-1)+6v | | 14(-7y+2)=-168 |