1/2n+7=n+142

Simple and best practice solution for 1/2n+7=n+142 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/2n+7=n+142 equation:



1/2n+7=n+142
We move all terms to the left:
1/2n+7-(n+142)=0
Domain of the equation: 2n!=0
n!=0/2
n!=0
n∈R
We get rid of parentheses
1/2n-n-142+7=0
We multiply all the terms by the denominator
-n*2n-142*2n+7*2n+1=0
Wy multiply elements
-2n^2-284n+14n+1=0
We add all the numbers together, and all the variables
-2n^2-270n+1=0
a = -2; b = -270; c = +1;
Δ = b2-4ac
Δ = -2702-4·(-2)·1
Δ = 72908
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{72908}=\sqrt{4*18227}=\sqrt{4}*\sqrt{18227}=2\sqrt{18227}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-270)-2\sqrt{18227}}{2*-2}=\frac{270-2\sqrt{18227}}{-4} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-270)+2\sqrt{18227}}{2*-2}=\frac{270+2\sqrt{18227}}{-4} $

See similar equations:

| 4/x+3-3/x-3=4x/x2-9 | | 0.55x=4.95 | | X-y=17, | | 5+1/x-1/x2=0 | | -x(x+4)=(x-4)(x-4) | | 10-7x=4(2x+10) | | -4(x-2)+5x=2(x+4)–x | | 3x+12-2x+8=1+2x | | 5x+8=25/4x | | (2+z)(5z-6)=0 | | -(x-1)+5=2(+3)-5 | | -(x-1)+5=2(+3)-1 | | -(x-1)+5=2(+3)-3x | | -(x-1)+5=2(+3)-x | | 40x+260=8x-24 | | 7-3y=3 | | 24.95+.10m=19.95+.2m | | 144x-336=-4x+(-12) | | 11x+4=3(1-2x)+2 | | -9+7x=60x+(-21)-x | | 9^(y+7)=4(2) | | 9^(y+7)=8 | | 15+4x=56+-12-x | | y/3+11=y/23 | | -1-4y=7+y | | -8z+3=21 | | -15+5x=3(13x+25)+x | | 2n-6=-8n+24 | | 9x-15=111 | | 6x+1=36 | | 5x+(-8)=1 | | 17x+(-3)=10x+31 |

Equations solver categories